Global and blow-up solutions for a mutualistic model

نویسنده

  • Peng Feng
چکیده

We study the global and blow-up solutions for a strong degenerate reaction–diffusion system modeling the interactions of two biological species. The local existence and uniqueness of a classical solution are established. We further give the critical exponent for reaction and absorption terms for the existence of global and blow-up solutions. We show that the solution may blow up if the intraspecific competition is weak. This supports ecologist A.J. Nicholson’s conclusion that intraspecific competition is the main factor regulating population size. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Existence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation

‎In this paper‎, ‎we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation‎. ‎Moreover‎, ‎the finite-time blow-up of the solution for the equation is investigated by the concavity method‎.

متن کامل

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Global Solutions and Blow-up Profiles for a Nonlinear Degenerate Parabolic Equation with Nonlocal Source

This paper deals with a degenerate parabolic equation vt = ∆v + av1 ∥v∥1 α1 subject to homogeneous Dirichlet condition. The local existence of a nonnegative weak solution is given. The blow-up and global existence conditions of nonnegative solutions are obtained. Moreover, we establish the precise blow-up rate estimates for all the blow-up solutions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008